Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Support
    • Submit feedback
  • Sign in / Register
A
attendtug
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Jestine Witzel
  • attendtug
  • Issues
  • #1

Closed
Open
Opened Feb 11, 2025 by Jestine Witzel@jestinezxv341
  • Report abuse
  • New issue
Report abuse New issue

Artificial General Intelligence


Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably exceeds human cognitive capabilities. AGI is thought about among the definitions of strong AI.

Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and development tasks across 37 nations. [4]
The timeline for attaining AGI stays a subject of continuous dispute amongst researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others maintain it might take a century or longer; a minority think it may never ever be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed concerns about the quick development towards AGI, recommending it could be achieved quicker than many expect. [7]
There is argument on the precise definition of AGI and relating to whether modern big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have mentioned that alleviating the risk of human termination posed by AGI must be a global top priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology

AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some academic sources schedule the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one specific problem however does not have general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]
Related principles include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is a lot more normally smart than human beings, [23] while the concept of transformative AI relates to AI having a large influence on society, for instance, similar to the agricultural or industrial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For instance, a proficient AGI is specified as an AI that outperforms 50% of skilled adults in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a limit of 100%. They consider large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics

Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics

Researchers usually hold that intelligence is needed to do all of the following: [27]
factor, usage technique, resolve puzzles, and make judgments under uncertainty represent understanding, consisting of typical sense understanding strategy discover

  • communicate in natural language
  • if essential, integrate these abilities in conclusion of any given objective

Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra traits such as imagination (the ability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that display much of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support system, robot, evolutionary calculation, intelligent agent). There is debate about whether modern AI systems have them to a sufficient degree.

Physical characteristics

Other abilities are considered preferable in smart systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and control things, modification location to check out, etc).
This includes the capability to detect and react to threat. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate items, modification location to explore, etc) can be preferable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may currently be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, supplied it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never ever been proscribed a particular physical personification and therefore does not require a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI

Several tests implied to confirm human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a male, by addressing questions put to it, and it will just pass if the pretence is fairly convincing. A substantial part of a jury, who must not be professional about devices, need to be taken in by the pretence. [37]
AI-complete problems

A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to implement AGI, since the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to need basic intelligence to resolve along with people. Examples consist of computer system vision, natural language understanding, and handling unanticipated scenarios while resolving any real-world issue. [48] Even a particular job like translation needs a machine to check out and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully replicate the author's initial intent (social intelligence). All of these issues need to be resolved simultaneously in order to reach human-level machine efficiency.

However, many of these jobs can now be performed by modern-day large language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous criteria for checking out understanding and visual thinking. [49]
History

Classical AI

Modern AI research began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that synthetic general intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of creating 'artificial intelligence' will substantially be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar job, were directed at AGI.

However, in the early 1970s, it ended up being obvious that researchers had actually grossly undervalued the problem of the job. Funding firms ended up being doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In action to this and the success of expert systems, both market and government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who predicted the impending achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a reputation for making vain guarantees. They ended up being unwilling to make predictions at all [d] and prevented reference of "human level" artificial intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI accomplished commercial success and academic respectability by focusing on particular sub-problems where AI can produce verifiable outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research study in this vein is greatly moneyed in both academia and industry. As of 2018 [update], development in this field was considered an emerging pattern, and a mature stage was expected to be reached in more than ten years. [64]
At the turn of the century, lots of mainstream AI researchers [65] hoped that strong AI might be developed by combining programs that fix numerous sub-problems. Hans Moravec composed in 1988:

I am confident that this bottom-up route to expert system will one day meet the standard top-down route over half method, ready to provide the real-world competence and the commonsense understanding that has been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:

The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is really just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, considering that it looks as if getting there would just total up to uprooting our signs from their intrinsic significances (thereby simply decreasing ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research

The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy goals in a wide range of environments". [68] This type of AGI, characterized by the ability to maximise a mathematical definition of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a variety of visitor lecturers.

As of 2023 [upgrade], a small number of computer researchers are active in AGI research, and lots of add to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continually learn and innovate like people do.

Feasibility

Since 2023, the advancement and potential accomplishment of AGI stays a topic of extreme dispute within the AI neighborhood. While traditional consensus held that AGI was a distant objective, recent advancements have actually led some researchers and industry figures to claim that early kinds of AGI may currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would require "unforeseeable and basically unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level artificial intelligence is as wide as the gulf in between present area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the absence of clarity in defining what intelligence requires. Does it require consciousness? Must it display the ability to set objectives along with pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding needed? Does intelligence require explicitly reproducing the brain and its particular faculties? Does it need feelings? [81]
Most AI researchers believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that the present level of development is such that a date can not precisely be forecasted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls conducted in 2012 and 2013 suggested that the median quote amongst experts for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the same concern but with a 90% self-confidence instead. [85] [86] Further current AGI progress considerations can be found above Tests for verifying human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it could reasonably be considered as an early (yet still incomplete) variation of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of general intelligence has actually already been attained with frontier models. They wrote that unwillingness to this view comes from four main factors: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the introduction of large multimodal models (large language designs capable of processing or producing several methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this ability to think before responding represents a new, additional paradigm. It improves design outputs by spending more computing power when producing the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had accomplished AGI, specifying, "In my viewpoint, we have actually already achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than the majority of humans at a lot of jobs." He also dealt with criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the scientific method of observing, assuming, and verifying. These declarations have sparked argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show exceptional versatility, they may not totally fulfill this standard. Notably, Kazemi's remarks came shortly after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's tactical intentions. [95]
Timescales

Progress in expert system has actually traditionally gone through durations of rapid progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create space for further development. [82] [98] [99] For example, the hardware readily available in the twentieth century was not enough to implement deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a truly versatile AGI is built differ from ten years to over a century. Since 2007 [update], the agreement in the AGI research community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have given a large range of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards anticipating that the start of AGI would occur within 16-26 years for modern and historical predictions alike. That paper has actually been criticized for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the traditional method used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was regarded as the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old kid in first grade. A grownup pertains to about 100 usually. Similar tests were brought out in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out many varied tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to comply with their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and showed human-level efficiency in tasks covering several domains, such as mathematics, coding, and law. This research sparked an argument on whether GPT-4 could be considered an early, incomplete variation of synthetic basic intelligence, stressing the requirement for more exploration and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The idea that this things could in fact get smarter than individuals - a couple of people believed that, [...] But many people thought it was method off. And I thought it was way off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis similarly said that "The progress in the last few years has been quite extraordinary", and that he sees no reason that it would slow down, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would can passing any test at least as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation

While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational gadget. The simulation model must be sufficiently loyal to the initial, so that it behaves in virtually the same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has been discussed in expert system research [103] as a technique to strong AI. Neuroimaging innovations that could provide the needed in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will appear on a similar timescale to the computing power required to imitate it.

Early estimates

For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, provided the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the required hardware would be available sometime between 2015 and 2025, if the rapid development in computer system power at the time of composing continued.

Current research study

The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially comprehensive and publicly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.

Criticisms of simulation-based methods

The artificial nerve cell design presumed by Kurzweil and used in lots of current synthetic neural network implementations is easy compared with biological neurons. A brain simulation would likely have to record the detailed cellular behaviour of biological nerve cells, presently understood just in broad summary. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the estimates do not represent glial cells, which are known to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain approach derives from embodied cognition theory which asserts that human embodiment is a vital aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any totally functional brain design will need to encompass more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.

Philosophical perspective

"Strong AI" as specified in approach

In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a stronger statement: it presumes something unique has taken place to the maker that surpasses those abilities that we can test. The behaviour of a "weak AI" maker would be exactly identical to a "strong AI" device, however the latter would also have subjective conscious experience. This usage is also common in scholastic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - indeed, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.

Consciousness

Consciousness can have different meanings, and some elements play considerable roles in science fiction and the principles of expert system:

Sentience (or "remarkable awareness"): The ability to "feel" understandings or feelings subjectively, instead of the ability to factor about perceptions. Some theorists, such as David Chalmers, utilize the term "awareness" to refer solely to incredible consciousness, which is roughly comparable to sentience. [132] Determining why and how subjective experience arises is referred to as the difficult problem of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was widely contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, specifically to be purposely familiar with one's own thoughts. This is opposed to just being the "topic of one's believed"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the same method it represents everything else)-however this is not what individuals typically indicate when they utilize the term "self-awareness". [g]
These characteristics have an ethical dimension. AI life would give rise to concerns of well-being and legal defense, similarly to animals. [136] Other aspects of consciousness associated to cognitive capabilities are likewise appropriate to the principle of AI rights. [137] Figuring out how to integrate advanced AI with existing legal and social frameworks is an emergent issue. [138]
Benefits

AGI might have a variety of applications. If oriented towards such objectives, AGI might assist reduce numerous problems worldwide such as cravings, hardship and health problems. [139]
AGI might enhance efficiency and effectiveness in the majority of jobs. For example, in public health, AGI could accelerate medical research study, especially against cancer. [140] It could look after the elderly, [141] and equalize access to fast, premium medical diagnostics. It could offer enjoyable, cheap and tailored education. [141] The need to work to subsist could become obsolete if the wealth produced is correctly redistributed. [141] [142] This likewise raises the concern of the location of human beings in a drastically automated society.

AGI might also help to make rational choices, and to expect and prevent disasters. It might likewise assist to profit of potentially catastrophic innovations such as nanotechnology or climate engineering, while preventing the associated risks. [143] If an AGI's main objective is to avoid existential catastrophes such as human termination (which could be difficult if the Vulnerable World Hypothesis ends up being true), [144] it could take measures to considerably lower the dangers [143] while decreasing the effect of these measures on our lifestyle.

Risks

Existential threats

AGI might represent numerous kinds of existential threat, which are risks that threaten "the early termination of Earth-originating smart life or the irreversible and extreme damage of its capacity for desirable future advancement". [145] The threat of human termination from AGI has been the subject of lots of debates, however there is also the possibility that the advancement of AGI would lead to a permanently problematic future. Notably, it might be used to spread and maintain the set of worths of whoever develops it. If mankind still has ethical blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could assist in mass security and brainwashing, which might be used to develop a stable repressive around the world totalitarian routine. [147] [148] There is also a danger for the makers themselves. If machines that are sentient or otherwise worthwhile of moral factor to consider are mass developed in the future, engaging in a civilizational course that indefinitely disregards their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI might enhance mankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human termination

The thesis that AI positions an existential threat for people, and that this threat requires more attention, is controversial but has actually been backed in 2023 by many public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:

So, dealing with possible futures of incalculable benefits and dangers, the experts are undoubtedly doing everything possible to ensure the best result, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll arrive in a couple of decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence enabled humankind to dominate gorillas, which are now vulnerable in manner ins which they might not have expected. As a result, the gorilla has become a threatened species, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity which we need to be careful not to anthropomorphize them and interpret their intents as we would for humans. He stated that individuals will not be "wise enough to create super-intelligent machines, yet extremely foolish to the point of providing it moronic goals with no safeguards". [155] On the other side, the principle of instrumental convergence suggests that nearly whatever their goals, intelligent agents will have reasons to try to survive and get more power as intermediary steps to accomplishing these objectives. Which this does not require having feelings. [156]
Many scholars who are worried about existential risk advocate for more research study into fixing the "control problem" to address the question: what types of safeguards, algorithms, or architectures can developers carry out to increase the probability that their recursively-improving AI would continue to act in a friendly, instead of destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of security precautions in order to launch items before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can position existential risk likewise has detractors. Skeptics usually state that AGI is unlikely in the short-term, or that issues about AGI distract from other problems connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to additional misconception and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some scientists believe that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, released a joint declaration asserting that "Mitigating the risk of termination from AI ought to be an international top priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment

Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees may see a minimum of 50% of their tasks impacted". [166] [167] They think about office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make decisions, to interface with other computer tools, however likewise to control robotized bodies.

According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be redistributed: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners successfully lobby against wealth redistribution. So far, the pattern seems to be toward the second alternative, with technology driving ever-increasing inequality

Elon Musk considers that the automation of society will require federal governments to embrace a universal basic earnings. [168]
See also

Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI security - Research location on making AI safe and useful AI alignment - AI conformance to the designated objective A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated machine learning - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play various video games Generative expert system - AI system efficient in generating material in reaction to triggers Human Brain Project - Scientific research study task Intelligence amplification - Use of information innovation to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task learning - Solving several machine finding out tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of synthetic intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of synthetic intelligence. Transfer learning - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially developed and optimized for expert system. Weak artificial intelligence - Form of expert system.
Notes

^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese space. ^ AI founder John McCarthy composes: "we can not yet characterize in general what sort of computational procedures we want to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence scientists, see viewpoint of synthetic intelligence.). ^ The Lighthill report particularly slammed AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being identified to money only "mission-oriented direct research study, rather than basic undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the remainder of the employees in AI if the inventors of brand-new basic formalisms would reveal their hopes in a more safeguarded form than has actually often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a standard AI book: "The assertion that machines might perhaps act wisely (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact believing (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and alerts of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real threat is not AI itself however the method we release it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential threats to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI should be an international concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the subjects covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of challenging exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers prevented the term expert system for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in machine intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of skilled viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that helped a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 tasks, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'just a few years,' states CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide range of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for curiosity by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The remarkable Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk presented but synthetic intelligence can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact potential of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers could see their jobs affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic income since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can solve issues and accomplish goals worldwide as well as human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system simple adequate to be reasonable will not be complicated enough to behave wisely, while any system complicated enough to act smartly will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple silly. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, factor and purpose originate from acting in the world and experiencing the effects. Expert systems - disembodied, strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who wish to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus details the demands that residents must make of their governments and the tech companies. They include transparency on how AI systems work; compensation for individuals if their information [are] used to train LLMs (big language model) s and the right to grant this use; and the ability to hold tech companies liable for the damages they trigger by removing Section 230, enforcing money penalites, and passing stricter item liability laws ... Marcus also suggests ... that a new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] an expert licensing program for engineers that would operate in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise vowed to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled humans for asteroidsathome.net years, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has exposed that although NLP (natural-language processing) designs are capable of unbelievable tasks, their capabilities are very much restricted by the amount of context they receive. This [...] might cause [problems] for researchers who hope to utilize them to do things such as evaluate ancient languages. Sometimes, there are couple of historical records on long-gone civilizations to work as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced utilizing synthetic intelligence that in fact trick people, then they hardly exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their function much better looks like that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to overlook contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to factor logically and attempted to rely on its large database of ... truths obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not handle circumstances their programmers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have already caused disaster. Advanced auto-pilot functions in automobiles, although they carry out well in some scenarios, have actually driven cars and trucks without alerting into trucks, concrete barriers, and parked cars. In the wrong circumstance, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the risks are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
  • Discussion
  • Designs
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: jestinezxv341/attendtug#1